
Package: StratifiedRF (via r-universe)
September 17, 2024

Type Package

Title Builds Trees by Sampling Variables in Groups

Version 0.2.2

Author David Cortes <david.cortes.rivera@gmail.com>

Maintainer David Cortes <david.cortes.rivera@gmail.com>

Description Random Forest-like tree ensemble that works with groups of
predictor variables. When building a tree, a number of
variables is taken randomly from each group separately, thus
ensuring that it considers variables from each group for the
splits. Useful when rows contain information about different
things (e.g. user information and product information) and it's
not sensible to make a prediction with information from only
one group of variables, or when there are far more variables
from one group than the other and it's desired to have groups
appear evenly on trees. Trees are grown using the C5.0
algorithm rather than the usual CART algorithm. Supports
parallelization (multithreaded), missing values in predictors,
and categorical variables (without doing One-Hot encoding in
the processing). Can also be used to create a regular
(non-stratified) Random Forest-like model, but made up of C5.0
trees and with some additional control options. As it's built
with C5.0 trees, it works only for classification (not for
regression).

Imports C50, dplyr, parallel, stats

License GPL-3

LazyData TRUE

RoxygenNote 6.0.1

NeedsCompilation no

Date/Publication 2017-06-30 17:19:38 UTC

Repository https://david-cortes.r-universe.dev

RemoteUrl https://github.com/david-cortes/stratifiedrf

RemoteRef HEAD

RemoteSha 70d5ff051f57e51028015e724ca03a56b635d0fa

1

2 predict.stratified_rf

Contents
predict.stratified_rf . 2
print.stratified_rf . 3
stratified_rf . 4
summary.stratified_rf . 5
varimp_stratified_rf . 6

Index 7

predict.stratified_rf Make predictions on new data

Description

Make predictions from a stratified_rf model on new data.

Usage

S3 method for class 'stratified_rf'
predict(object, data, type = "class",
agg_type = "prob", vote_type = "simple", na.action = na.pass,
threshold = NULL, ...)

Arguments

object A stratified_rf model.

data New data on which to make predictions (data.frame only). Must have the same
names as the data used to build the model.

type Prediction type. Either "class" to get the predicted class or "prob" to get the
voting scores for each class.

agg_type How to combine the predictions from individual trees. Either "prob" to average
the probabilities output from each tree or "class" to count the final predictions
from each.

vote_type How to weight the outputs from each tree. Either "simple" to average them, or
"weighted" for a weighted average according to their OOB classification accu-
racy.

na.action Function indicating how to handle missing values (see the ’C50’ documentation
for details).

threshold Count only votes from trees whose out-of-bag classification accuracy is above
this threshold. Must be a number between 0 and 1.

... other options (not currently used)

Details

Note that by default, for classification models the predictions are made quite differently from the
original Random Forest algorithm.

print.stratified_rf 3

See Also

’C50’ library: https://cran.r-project.org/package=C50

Examples

data(iris)
groups <- list(c("Sepal.Length","Sepal.Width"),c("Petal.Length","Petal.Width"))
mtry <- c(1,1)
m <- stratified_rf(iris,"Species",groups,mtry,ntrees=2,multicore=FALSE)
predict(m,iris)

print.stratified_rf Print summary statistics from a model

Description

Print summary statistics from a model

Usage

S3 method for class 'stratified_rf'
print(x, ...)

Arguments

x A stratified_rf model.

... other options (not currently used)

Examples

data(iris)
groups <- list(c("Sepal.Length","Sepal.Width"),c("Petal.Length","Petal.Width"))
mtry <- c(1,1)
m <- stratified_rf(iris,"Species",groups,mtry,ntrees=2,multicore=FALSE)
print(m)

https://cran.r-project.org/package=C50

4 stratified_rf

stratified_rf Stratified Random Forest

Description

Random Forest that works with groups of predictor variables. When building a tree, a number of
variables is taken from each group separately. Useful when rows contain information about different
things (e.g. user information and product information) and it’s not sensible to make a prediction
with information from only one group of variables, or when there are far more variables from one
group than the other and it’s desired to have groups appear evenly on trees.

Usage

stratified_rf(df, targetvar, groups, mtry = "auto", ntrees = 500,
multicore = TRUE, class_quotas = NULL, sample_weights = NULL,
fulldepth = TRUE, replacement = TRUE, c50_control = NULL,
na.action = na.pass, drop_threshold = NULL)

Arguments

df Data to build the model (data.frame only).

targetvar String indicating the name of the target or outcome variable in the data. Charac-
ter types will be coerced to factors.

groups Unnamed list, containing at each entry a group of variables (as a string vector
with their names).

mtry A numeric vector indicating how many variables to take from each group when
building each tree. If set to "auto" then, for each group, mtry=round(sqrt(m_total)*len(m_group)/len(m_total))
(with a minimum of 1 for each group).

ntrees Number of trees to grow. When setting multicore=TRUE, the number of trees
should be a multiple of the number of cores, otherwise it will get rounded down-
wards to the nearest multiple.

multicore Whether to use multiple CPU cores to parallelize the construction of trees. Par-
allelization is done with the ’parallel’ library’s default settings.

class_quotas How many rows from each class to use in each tree (useful when there is a
class imbalance). Must be a numeric vector or a named list with the number
of desired rows to sample for each level of the target variable. Ignored when
sample_weights is passed. Note that using more rows than the data originally
had might result in incorrect out-of-bag error estimates.

sample_weights Probability of sampling each row when building a tree. Must be a numeric vec-
tor. If not defined, then all rows have the same probability. Note that, depending
on the structure of the data, setting this might result in incorret out-of-bag error
estimates.

fulldepth Whether to grow the trees to full depth. Ignored when passing c50_control.

replacement Whether to sample rows with replacement.

summary.stratified_rf 5

c50_control Custom parameters for growing trees. Must be a C5.0Control object compatible
with the ’C50’ package.

na.action A function indicating how to handle NAs. Default is to include missing values
when building a tree (see ’C50’ documentation).

drop_threshold Drop a tree whenever its resulting out-of-bag classification accuracy falls below
a certain threshold specified here. Must be a number between 0 and 1.

Details

Note that while this algorithm forces each tree to consider possible splits with variables from all
groups, it doesn’t guarantee that they will end up having splits with variables from different groups.

The original Random Forest algorithm recommends a total number of sqrt(n_features), but this
might not work so well when there are unequal groups of variables.

Implementation of everything outside the tree-building is in native R code, thus might be slow. Trees
are grown using the C5.0 algorithm from the ’C50’ library, thus it can be used for classification
only (not for regression). Refer to the ’C50’ library for any documentation about the tree-building
algorithm.

See Also

’C50’ library: https://cran.r-project.org/package=C50

Examples

data(iris)
groups <- list(c("Sepal.Length","Sepal.Width"),c("Petal.Length","Petal.Width"))
mtry <- c(1,1)
m <- stratified_rf(iris,"Species",groups,mtry,ntrees=2,multicore=FALSE)
summary(m)

summary.stratified_rf Summary statistics from a model

Description

Calculates error statistics for out-of-bag samples from a stratified_rf model.

Usage

S3 method for class 'stratified_rf'
summary(object, ...)

Arguments

object A stratified_rf model.

... other options (not currently used)

https://cran.r-project.org/package=C50

6 varimp_stratified_rf

Details

Predictions for a class are made by averaging class probabilities across trees rather than by a major-
ity vote. All trees are weighted equally.

Examples

data(iris)
groups <- list(c("Sepal.Length","Sepal.Width"),c("Petal.Length","Petal.Width"))
mtry <- c(1,1)
m <- stratified_rf(iris,"Species",groups,mtry,ntrees=2,multicore=FALSE)
summary(m)

varimp_stratified_rf Heuristic on variable importance

Description

Heuristic on variable importance, taken as averages from the variable importances calculated for
each tree.

Usage

varimp_stratified_rf(model, metric = "usage", agg_type = "simple")

Arguments

model A stratified_rf model.

metric How to calculate the variable importance from each tree. Either "usage" or
"splits".

agg_type How to aggregate the variable importances obtained from each tree. Either "sim-
ple" for a simple average, or "weighted" for an average weighted by each tree’s
accuracy.

Details

Methods are taken directly from the C5.0 trees. Currently doesn’t support permutation tests.

Value

A named data frame with the importance score of each variable, sorted from largest to smallest.

Examples

data(iris)
groups <- list(c("Sepal.Length","Sepal.Width"),c("Petal.Length","Petal.Width"))
mtry <- c(1,1)
m <- stratified_rf(iris,"Species",groups,mtry,ntrees=2,multicore=FALSE)
varimp_stratified_rf(m)

Index

∗ predict.stratified_rf
predict.stratified_rf, 2

∗ stratified_rf
stratified_rf, 4

predict.stratified_rf, 2
print.stratified_rf, 3

stratified_rf, 4
summary.stratified_rf, 5

varimp_stratified_rf, 6

7

	predict.stratified_rf
	print.stratified_rf
	stratified_rf
	summary.stratified_rf
	varimp_stratified_rf
	Index

