Package: costsensitive 0.1.2.10

costsensitive: Cost-Sensitive Multi-Class Classification

Reduction-based techniques for cost-sensitive multi-class classification, in which each observation has a different cost for classifying it into one class, and the goal is to predict the class with the minimum expected cost for each new observation. Implements Weighted All-Pairs (Beygelzimer, Langford, & Zadrozny (2008) <doi:10.1007/978-0-387-79361-0_1>), Weighted One-Vs-Rest (Beygelzimer,Dani, Hayes, Langford, Zadrozny, (2005) <https://dl.acm.org/citation.cfm?id=1102358>) and Regression One-Vs-Rest. Works with arbitrary classifiers taking observation weights, or with regressors. Also implements cost-proportionate rejection sampling for working with classifiers that don't accept observation weights.

Authors:David Cortes

costsensitive_0.1.2.10.tar.gz
costsensitive_0.1.2.10.zip(r-4.5)costsensitive_0.1.2.10.zip(r-4.4)costsensitive_0.1.2.10.zip(r-4.3)
costsensitive_0.1.2.10.tgz(r-4.4-x86_64)costsensitive_0.1.2.10.tgz(r-4.4-arm64)costsensitive_0.1.2.10.tgz(r-4.3-x86_64)costsensitive_0.1.2.10.tgz(r-4.3-arm64)
costsensitive_0.1.2.10.tar.gz(r-4.5-noble)costsensitive_0.1.2.10.tar.gz(r-4.4-noble)
costsensitive_0.1.2.10.tgz(r-4.4-emscripten)costsensitive_0.1.2.10.tgz(r-4.3-emscripten)
costsensitive.pdf |costsensitive.html
costsensitive/json (API)

# Install 'costsensitive' in R:
install.packages('costsensitive', repos = c('https://david-cortes.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/david-cortes/costsensitive/issues

On CRAN:

cost-sensitive-classificationmulti-label-classification

5.30 score 47 stars 28 scripts 167 downloads 4 exports 0 dependencies

Last updated 5 months agofrom:cca79047a6. Checks:OK: 2 NOTE: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-win-x86_64NOTENov 15 2024
R-4.5-linux-x86_64NOTENov 15 2024
R-4.4-win-x86_64NOTENov 15 2024
R-4.4-mac-x86_64NOTENov 15 2024
R-4.4-mac-aarch64NOTENov 15 2024
R-4.3-win-x86_64OKNov 15 2024
R-4.3-mac-x86_64NOTENov 15 2024
R-4.3-mac-aarch64NOTENov 15 2024

Exports:cost.proportionate.classifierregression.one.vs.restweighted.all.pairsweighted.one.vs.rest

Dependencies: