Package: isotree 0.6.1

isotree: Isolation-Based Outlier Detection

Fast and multi-threaded implementation of isolation forest (Liu, Ting, Zhou (2008) <doi:10.1109/ICDM.2008.17>), extended isolation forest (Hariri, Kind, Brunner (2018) <arxiv:1811.02141>), SCiForest (Liu, Ting, Zhou (2010) <doi:10.1007/978-3-642-15883-4_18>), fair-cut forest (Cortes (2021) <arxiv:2110:13402>), robust random-cut forest (Guha, Mishra, Roy, Schrijvers (2016) <http://proceedings.mlr.press/v48/guha16.html>), and customizable variations of them, for isolation-based outlier detection, clustered outlier detection, distance or similarity approximation (Cortes (2019) <arxiv:1910.12362>), isolation kernel calculation (Ting, Zhu, Zhou (2018) <doi:10.1145/3219819.3219990>), and imputation of missing values (Cortes (2019) <arxiv:1911.06646>), based on random or guided decision tree splitting, and providing different metrics for scoring anomalies based on isolation depth or density (Cortes (2021) <arxiv:2111.11639>). Provides simple heuristics for fitting the model to categorical columns and handling missing data, and offers options for varying between random and guided splits, and for using different splitting criteria.

Authors:David Cortes [aut, cre, cph], Thibaut Goetghebuer-Planchon [cph], David Blackman [cph], Sebastiano Vigna [cph], NumPy Developers [cph], SciPy Developers [cph], Enthought Inc [cph], Stephen Moshier [cph]

isotree_0.6.1.tar.gz
isotree_0.6.1.zip(r-4.5)isotree_0.6.1.zip(r-4.4)isotree_0.6.1.zip(r-4.3)
isotree_0.6.1.tgz(r-4.4-x86_64)isotree_0.6.1.tgz(r-4.4-arm64)isotree_0.6.1.tgz(r-4.3-x86_64)isotree_0.6.1.tgz(r-4.3-arm64)
isotree_0.6.1.tar.gz(r-4.5-noble)isotree_0.6.1.tar.gz(r-4.4-noble)
isotree.pdf |isotree.html
isotree/json (API)

# Install 'isotree' in R:
install.packages('isotree', repos = c('https://david-cortes.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/david-cortes/isotree/issues

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

anomaly-detectionimputationisolation-forestoutlier-detection

10.13 score 188 stars 4 packages 92 scripts 1.1k downloads 23 exports 2 dependencies

Last updated 2 months agofrom:09ca00010d. Checks:OK: 4 NOTE: 5. Indexed: yes.

TargetResultDate
Doc / VignettesOKSep 20 2024
R-4.5-win-x86_64NOTESep 20 2024
R-4.5-linux-x86_64NOTESep 20 2024
R-4.4-win-x86_64NOTESep 20 2024
R-4.4-mac-x86_64NOTESep 20 2024
R-4.4-mac-aarch64NOTESep 20 2024
R-4.3-win-x86_64OKSep 20 2024
R-4.3-mac-x86_64OKSep 20 2024
R-4.3-mac-aarch64OKSep 20 2024

Exports:isolation.forestisotree.add.treeisotree.append.treesisotree.build.indexerisotree.deep.copyisotree.drop.imputerisotree.drop.indexerisotree.drop.reference.pointsisotree.export.modelisotree.get.num.nodesisotree.import.modelisotree.is.sameisotree.plot.treeisotree.restore.handleisotree.set.nthreadsisotree.set.reference.pointsisotree.subset.treesisotree.to.graphvizisotree.to.jsonisotree.to.sqlpredict.isolation_forestprint.isolation_forestsummary.isolation_forest

Dependencies:jsonliteRcpp

An Introduction to Isolation Forests

Rendered fromAn_Introduction_to_Isolation_Forests.Rmdusingknitr::rmarkdownon Sep 20 2024.

Last update: 2022-02-13
Started: 2022-02-13

Readme and manuals

Help Manual

Help pageTopics
Create Isolation Forest Modelisolation.forest
Add additional (single) tree to isolation forest modelisotree.add.tree
Append isolation trees from one model into anotherisotree.append.trees
Build Indexer for Faster Terminal Node Predictions and/or Distance Calculationsisotree.build.indexer
Deep-Copy an Isolation Forest Model Objectisotree.deep.copy
Drop Imputer Sub-Object from Isolation Forest Model Objectisotree.drop.imputer
Drop Indexer Sub-Object from Isolation Forest Model Objectisotree.drop.indexer
Drop Reference Points from Isolation Forest Model Objectisotree.drop.reference.points
Export Isolation Forest modelisotree.export.model
Get Number of Nodes per Treeisotree.get.num.nodes
Load an Isolation Forest model exported from Pythonisotree.import.model
Check if two Isolation Forest Models Share the Same C++ Objectisotree.is.same
Plot Tree from Isolation Forest Modelisotree.plot.tree
Unpack isolation forest model after de-serializingisotree.restore.handle
Set Number of Threads for Isolation Forest Model Objectisotree.set.nthreads
Set Reference Points to Calculate Distances or Kernels Withisotree.set.reference.points
Subset trees of a given modelisotree.subset.trees [.isolation_forest
Generate GraphViz Dot Representation of Treeisotree.to.graphviz
Generate JSON representations of model treesisotree.to.json
Generate SQL statements from Isolation Forest modelisotree.to.sql
Get Number of Trees in Modellength.isolation_forest
Predict method for Isolation Forestpredict.isolation_forest
Print summary information from Isolation Forest modelprint.isolation_forest
Print summary information from Isolation Forest modelsummary.isolation_forest
Get Variable Names for Isolation Forest Modelvariable.names.isolation_forest